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The three-dimensional U(N) symmetric ~(lp*.q)~ model coupled to N-component fermions is considered within the l/N 
expansion. In contrast to the purely bosonic case, here we find in the large N limit only a (nonperturbative) ultraviolet fixed 
point at n = q* = 179, whereas infrared fixed points are absent. 

Several years ago the O(N) (U(N)) symmetric 
q(q*-p)3 model in D =3 (euclidean space) dimensions 
(we shall consider explicitly the complex case), 

p!lp = I?# +IM2q*-q + (WN)((p**(p)2 

+ (rI/3N2)((P*Y)3 2 

came under intensive investigation both in the context 
of critical phenomena (as describing logarithmic correc- 
tions to scaling near a tricritical point) [ 11, as well as in 
the issues of symmetry breaking and vacuum stability 
[2 1. Recently there was a renewed interest in (1) [3] 
mainly due to the establishment of a nonperturbative 

ultraviolet fixed point (in the large N limit) bearing 

crucial implications for the ground state structure, the 

spectrum and the ultraviolet behavior of (1). 
In the present note we propose to analyze a generali- 

zation of (1): 

2 = -Qq + i?W - @Y)P - &**G), (2) 

within the l/N expansion in regard of nontrivial fixed 
points. In (2) $Y is an N-component fermion field and 
the auxiliary fermion field p is a Lagrange multiplier 

for the nonlinear constraints: $*-$ = p-cp = 0. Let us 
stress that the $ - cp interaction in (2) is the only pos- 
sible renormalizable and P-invariant one (in D = 3). 

Other renormalizable interactions ($*q)(q**+), (cp*-p) 
X (F+$) change sign under P-reflection. 

The model (2) arises as a simple particular case of 
the general class of D = 3 U(n)gauge @ U(N)UflaVor,, Higgs 
models with fermions (including the supersymmetric 
Higgs, (cD*~@)~=~ and the corresponding supersym- 
metric (generalized) nonlinear sigma-models) which 
were shown to possess several interesting properties 
within the l/N expansion [4] : a phase transition due 
to spontaneous breakdown of the internal symmetry, 

dynamical breakdown of discrete symmetries (P- and 
T-reflections), a nonperturbative particle spectrum 
(dynamical generation of (topological) gauge invariant 
mass terms [5 ] for the gauge fields and forming of 
composite fermions in the “high-temperature” phase, 
“confinement” of the gauge fields and some of the 
q’s and +‘s in the “low-temperature” phase). Also ex- 

act expressions (in the large N limit) of the renormaliza- 

tion group functions and the corresponding fixed point 
structure of the general D = 3 Higgs model with fer- 
mions are derived in ref. [6]. In particular, the scale 
invariant theories at any infrared or ultraviolet fixed 
point (except for the gaussian one) were shown to be 
P-invariant and nonlinear (i.e. containing nonlinear con- 

straints on up, $). However, it turns out that (2) does 
not lie on any generic ultraviolet or infrared stable sur- 
face in the coupling constant space of the general 
model, thus necessitating a special treatment. 

The l/N expansion of (2) is constructed along the 
standard line [ 1] starting from its auxiliary field form: 
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L?’ = lappI t [a0 t icu(x)] [q*.q -N/A/T - Na(x)] 

t 4Nl.l p-‘02 + iNno + iD$ - @V)P -%P** ti), 

(M//.L)~ + h/pT + v/T2 = 0, 

u = 8(h//.t + 2q/T)-l. (3) 

Here fi is a common mass scale and cro is an arbitrary 
fyd nonnegative constant (in the l/N expansion o. = 

mlp, the physical p-mass squared). To analyze fixed 
points we need (3) only on the critical surface T = T, 

(i.e. mlp = 0, (q) = 0 *l ). The “free” propagators 
((...Xo)) of the l/N Feynman graphs read (in momen- 

tum space) : 

(qJalp,*P’ = S,@ y , ci,V,P = sa&p2)-‘, 

(pp$O’ = N-1 16&P)-1’2, 

(cyc@ = N-18(p2)“2 [ 1 t (U//.&)“2] -l, 

b7P = N-l(u/811)[ 1 + (U/P) (J?2)1’2] -1, 

(cxu)(~) = N-1i(u/fi)u)@2)1/2 [l + (u/P)@~)~/~]-~. (4) 

Graphically (see figs. la-lc) they are represented as 
solid, solid directed, double solid directed, dashed, 
dotted and dashed-dotted lines, respectively. All ver- 
tices can be read off directly from the nonquadratic 
part of (3). 

The general form of the renormalization group equa- 
tions for (3) is as follows: 

( 
pa/ap + (1 - x~)u~/~u + fl,a/an 

+~LS d3xjn(x)U&Jx) W&J1 1 

= s d3x ba&) t ~a,i,(x)i,(x) t ~,i,(x)ip(x)l 2 

w2) = GA IL,%O,PI, 

p r) =A+$‘) t O(N-2), 
n 

1 sz = N-1[;’ + 0(N-2), 

(5) 

*l In the case of (2) (or (3)), unlike the general Higgs model 
with fermions, there is no generation of rn$ # 0 and, con- 
sequently, no dynamical breakdown of P-invariance. 
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Fig. 1. l/N graphs contributing to: (a) I?[$~;...,~); (b) 
$esp;...,o) without fermion loops;(c) 
taming fermion loops. Each trilinear vertex 
dotted lines bears a factor (-q). 

where W[(i,}] d enotes the (renormalized) generating 
functional of connected Green’s functions of (3). Here 
we employ a mass-independent renormalization scheme 
[7,4] of the “soft-mass” type [8] (“soft” masses are 
introduced only in (w*)(o), l+?>(O) (4)). We shall use 
(5) in the leading l/N order: 

(L,,L$ &J&J 
@mJ + um4q,, 

+ pL _ p)L 
PP 99 

_ {(,“L, ] pv*LP) 
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X !SLp/Q, . ..sjp)rb. \c, Ii a,o,pl Ilp=$ =o j 
’ O,O,P 

=o, 

[ci,ll -~d3x[j~~+j;Lti +h.c.l, rb, G V,,,,,l = W 

dx) f 6 W&~(x), 
Here the subscripts 

$(x) = 6 W/&T@(x). (6 cont’d) 

(0), (1) off’ denote leading, next- 

to-leading l/N order, respectively. Now, from (6) by 
means of the l/N graphical rules (4) and of the “soft- 
mass” renormalization scheme one can compute all re- 
normalization group functions of (2) in the large N 
limit. 

From eqs. (6) with (L,,LII, ; . . . . Lp) = (2,O; . . . . 0), 

(0,2; . . . . 0) ,..., (0 ,..., 2) we get: 

t(l) = (2/3n2)[4 + I(u)], 
P 

$!’ = 8/3n2, 

$‘) = $) = (16/3n2)[2 -Z(U)], (Y * 

{(1) = -(2/3n2) [8 + Z(U)], 
P (7) 

I&)-(1 tU2)-2[1 tu2 - ;7r(l -u*) - 2u*ln u]. 

At this point we remark that as long as j3, = ~(1 - 2{,) 

(cf. (5))> us = 0 (i.e. h, = 00 , cf. (3)) is an infrared 

fixed point exactly what is the case for (1). Moreover, 
77 turns out to be irrelevant in the infrared scaling limit 

u * 0 as it is for (1) (note from (7) that {g’ and 0;” 
(= -2{(d)) do not d epend on 7). Therefore, the interest- 
ing case, where one could eventually find new nontrivial 

fixed points for (2), is to set u = - in (3), (4) (tricritical 

limit [l]). 
Let us turn to eq. (6) with (L,,L$ ;...J,,) = (6,O; 

. . ..O). All corresponding l/N graphs (at u = -) are de- 
picted in figs. la-lc. Simple calculations yield 

p(l) = l63/X2 
1) 

- (32/n2h + (3/4rr2)n2 

- (1/1627r2)n3. (8) 

The sum of the third and the fourth terms on the right 

hand side of (8) exactly coincides with fly’ in the pure- 
ly bosonic case (1) (see Townsend (1977) [2 3 and 
Appelquist and Heinz [3]). The crucial effect of the in- 

ternal fermion loops in F@,...,O) (fig. lc) is the appear- 
ance of a large constant term in (8). Clearly, the origin 

7) = 0 ceases to be (an infrared) fixed point (unlike (1)) 
and also, the ultraviolet fixed point occurs at a smaller 
value of 17 = Q* = 179, as compared ton* = 192 for 
(1). Possible implications of this result will be discussed 
in a future paper. 
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